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A B S T R A C T

In this study, a low-cost thermal-RGB imager was developed for use in agricultural crop monitoring applications.
It is weatherproof, and has a geo-referencing capability along with a power management panel that allows
unattended field deployment of the systems for crop monitoring over extended period of time. The imager is
made up of single-board Linux-based computer integrated with RGB and thermal imaging modules. The imager
can be configured as FTP server to allow data transfer to/from a client computer. Developed was also the custom
image-processing algorithm which overlays, aligns thermal and RGB images, and mask for the thermal image to
remove the soil background and shaded leaves. The algorithm outputs are the average temperature of sunlit
leaves and canopy coverage. Prior to field validation, the performance of ten thermal modules and four fully
assembled RGB-thermal imagers were assessed under laboratory conditions. In the spring of 2017, two imagers
were mounted on a center pivot retrofitted with Medium Elevation Spray Application (MESA) and Low Elevation
Spray Application (LESA) systems in a mint field near Toppenish, WA. The thermal modules showed an accuracy
of ± 2.4 °C on average over a range of 0–50 °C of a blackbody target. Although accurate for larger canopies, the
imperfect alignment of RGB and thermal images introduced significant errors in the calculations of sunlit leaves
surface temperature in images with small canopy coverage. Further investigations revealed that the first peak of
thermal image relative frequency histogram could be a more accurate representative of sunlit leaf surface
temperature. Overall, the amended image-processing algorithm was able to successfully extract canopy surface
temperature and percent canopy cover from a wide range of images captured during the crop growing season.
The current design of imager allows for creating a network of imaging units in the field to obtain real-time
surface temperature data from plant canopies. The system has the potential to be used for creating evapo-
transpiration and prescription maps in real-time, and irrigation scheduling.

1. Introduction

Soil water deficit may lead to stomatal closure and elevated canopy
temperature in many plant species (Pou et al., 2014). This fact has long
been the basis for monitoring plant water status as a surrogate for direct
soil moisture measurements (Jackson et al., 1981). The advantage of a
thermal-based approach is that it is able to indicate crop health, and
detect the effect of salinity and water stress (Pereira et al., 2015). In-
frared thermometry-based irrigation scheduling has been shown to be
comparable to irrigation scheduling using the most accurate soil water
measurement methods in terms of crop water use efficiency (WUE) and
crop yields (Colaizzi et al., 2017; O’Shaughnessy et al., 2012, 2015,
2017). Canopy temperature measurements are carried out using either
thermal imagers or infrared thermal radiometers with the latter being
an economical and simple to use approach (Testi et al., 2008). The
limitations of thermal sensors and time limits of aerial-based thermal
imagery on one hand, and recent advancements leading to less

expensive, high-resolution thermal imagers on the other hand, have
encouraged researchers to find a wide range of applications for thermal
imagery in agriculture (Khanal et al., 2017; Cohen et al., 2012; Möller
et al., 2007). However, complicated image processing requirements and
the lack of commercial imagers suitable for continuous field measure-
ments remain a challenge.

An infrared thermometer (IRT) gives an average temperature of
plant canopy surface within the sensor’s field of view (FOV). Using
infrared thermometry in sparse plant canopies, because the soil back-
ground and non-transpiring parts of the canopy can interfere with
temperature measurements (Wanjura et al., 1984; Blonquist et al.,
2009; Osroosh et al., 2016a). Another issue is that both sunlit and
shaded leaves may be within the same FOV of the IRT, while the surface
temperature of the sunlit leaves better reflect water stress. Shaded parts
of canopy may not be good indicators of water stress because lower
levels of solar irradiance create low demand for transpiration. These
two types of leaves cannot be distinguished using IRT measurements
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alone. Using two IRTs pointed at the same canopy from opposite angles
or use of IRTs with a narrow FOV can mitigate such uncertainty (Jones,
1999; Berni et al., 2009; O’Shaughnessy et al., 2011), but does not re-
solve the issue completely.

Canopy temperature measurements have shown to be correlated
well with plant water potential. Cohen et al. (2005) used regression
models to correlate the crop water stress index (CWSI) with leaf water
potential in cotton. They used thermal imagery to calculate canopy
temperatures required for the estimations of the CWSI. Udompetaikul
et al. (2011) developed water status classification tools based on em-
pirical relationships among canopy temperature, air temperature, stem
water potential and photosynthetically active radiation (PAR) in al-
mond and walnut trees. Similarly, Dhillon et al. (2012, 2014a, 2014b)
developed various sensor suites and a continuous leaf monitoring
system for the measurements of canopy temperature and crop water
status. They evaluated their systems in orchards and vineyards.

Wireless networks of soil, water and plant sensors are increasingly
becoming the main method for crop monitoring in agricultural fields,
and to schedule irrigation (Coates et al., 2013; O’Shaughnessy et al.,
2015; Ojha et al., 2015). Most of the efforts, however, have focused on
wireless networks of soil moisture and weather sensors and used with
different types of irrigation systems (Stone et al., 1985; Hess, 1996;
Abreu and Pereira, 2002). For example, Kim and Evans (2009) used a
wireless sensor network (WSN) in a malting barley field to control a
site-specific linear-move irrigation system. Different cases of using
wireless IRTs have been reported for monitoring canopy surface tem-
perature or irrigation decision-making. Osroosh et al. (2016b) devel-
oped a decision support system integrated with a WSN of infrared
thermometer, soil moisture and microclimate sensors to automatically
schedule irrigation of apple trees. O’Shaughnessy et al. (2013, 2017)
used wireless infrared canopy temperature sensors mounted on a center
pivot to collect data and create irrigation prescription maps. Colaizzi
et al. (2017) used wireless IRTs onboard center pivot to measure canopy
surface temperature and estimate crop evapotranspiration. To the best
of our knowledge, no thermal imager with the capability of continuous
monitoring has been developed and used onboard a moving irrigation
system in wired or wireless communication mode.

The emergence of a wide range of open-source hardware and soft-
ware in recent years has brought many opportunities to the agricultural
sector. Many sensing tools, which were once too expensive or too de-
licate to be deployed in the field, can be developed at a low-cost for
field crop monitoring. The emerging thermal sensing technologies are
combining robustness, accuracy and low cost. On the other hand, on-
board image processing has become possible using low-cost single-
board computers like the Raspberry Pi (Raspberry Pi Foundation). Open
source image processing libraries such as OpenCV (Open Source

Computer Vision) also makes it possible to have most capabilities of a
powerful image-processing software like Matlab (MathWorks, Natick,
MA) on-board the Raspberry Pi. Existing methods for data transfer, data
mining, and computer networking can also be easily used for this
purpose. Overall, the above developments are shifting efforts in preci-
sion agriculture towards realization of imagery-based continuous crop
monitoring systems and control.

Specific objectives of the study were to (i) develop fully automatic
crop monitoring and data acquisition system for moving irrigation
systems based on thermal-RGB imagery, (ii) develop an image-proces-
sing algorithm to extract canopy surface temperature and percent ca-
nopy coverage from images, and (iii) calibrate and evaluate the system
under laboratory and field conditions. This paper emphasizes the de-
velopment of the system and presents the preliminary results of as-
sessment in a center pivot-irrigated mint field in the 2017 growing
season. Different components of the system, and its performance, ben-
efits and costs are discussed. Combined with microclimate information
from an on-site unit, collected data will be used to map crop water
stress and crop evapotranspiration (ETc), which are the subject of an-
other paper.

2. Materials and methods

2.1. Thermal-RGB imager design

Fig. 1 depicts the electronic components of the thermal-RGB imager
developed in this study. The electronic hardware is comprised of a
Raspberry Pi single-board computer (V3, Raspberry Pi Foundation) as
the core, radiometric thermal module with shutter (FLIR Lepton® 2.5,
FLIR Systems, Inc., Wilsonville, OR), RGB Raspberry Pi camera module
(V2, Raspberry Pi Foundation), GPS module (Ultimate GPS Breakout,
Adafruit Industries, New York City, NY), 2-channel relay board (Sun-
Founder, Shenzhen City, Guangdong Province, China), and a precise
DC-DC step-up/down voltage convertor (S18V20ALV, Pololu Robotics
and Electronics, Las Vegas, NV).

The thermal module has a resolution of 80 (horizontal)× 60 (ver-
tical) pixels, a reported accuracy of ± °5 C, frame rate of 9 Hz, and a
spectral response wavelength range of 8–14 µm. The horizontal field of
view (HFOV) of the module is 51°. A breakout board (FLIR Systems,
Inc., Wilsonville, OR) with the SPI communication method was used to
acquire data from the module. The resolution of the Pi camera is
3280×2464 pixels, and has HFOV of 62.2° and vertical field of view
(VFOV) of 48.8°. During preliminary experiments with the thermal
module, it was noticed that the module would freeze after working for a
number of hours. In order to resolve this issue, a relay board was added
to the design to reset the module automatically or manually. According

RGB Module 
GPS 

Thermal Module Relay Board 

12 V to 5V
Convertor  

 

Single-board  
Computer 

Power Supply Communication 

Fig. 1. Electronic components of the thermal-RGB imager. The electronic hardware is comprised of single-board computer, thermal module (radiometric with shutter), RGB camera
module, GPS module, and relay board.
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to its documentation, the GPS module has an accuracy of± 1.8m under
ideal conditions. The GPS module only works with the traditional la-
titude/longitude/altitude system and provided a real-time clock (RTC)
to the Raspberry Pi.

The Raspberry Pi board runs Raspbian Jessie (with PIXEL) as the
operating system. We have developed a graphical user interface (GUI)
(“ThermoCrop-FST™”) in Qt Creator Integrated Development
Environment (IDE) (The Qt Company, Santa Clara, CA) using various C
and C++ libraries including OpenCV (see Fig. 2). It eases camera
settings and allows for real-time monitoring. The main features of the
GUI include automatic real-time overlaying of RGB and thermal feeds
(if ‘RGB Overlay’ box is checked), manual capture mode (snapshot),
programmable capturing time window, and automatic interval
shooting. The imager will capture images automatically at specified
time intervals if the ‘auto capture’ box is checked or takes snapshots
manually if the box is unchecked. If the ‘auto off’ box is checked the
application will automatically turn the system off (automatic shut-
down). Captured images are processed and stored on a 16-GB SD card.
Four images are recorded at each shooting: i) thermal image in binary
format, ii) thermal false color image in JPG format, iii) RGB image in
JPG format, and iv) automatically aligned RGB and thermal images in
JPG format. GPS coordinates are stored in TXT format separately for
geotagging images. The available space on the SD card allows for

continuously recording images for about 45 days, if configured to ac-
quire data at maximum frequency of one image per min.

2.2. Weatherproof housing

The Raspberry Pi unit can produce a considerable amount of heat
depending on CPU usage, which needs to be dissipated. At the same
time, dust, humidity and water need to be kept out of the enclosure. To
design an appropriate housing, a series of experiments were conducted
with various custom-design enclosures. The final enclosure design can
be seen in Fig. 3. It is waterproof with the most sensitive points being
the thermal and RGB module lenses. The conical frustum-shaped head
was added to keep drops of rain from the lenses. One hole was em-
bedded in the housing for the cables and wires to go in or come out. The
hole was sealed using duct sealant. The imager housing measures 20 cm
in length. The diameter of the widest section is 16 cm and the diameter
of the narrowest section is 9 cm. The distance between the lenses is
25mm. The white enclosure was designed using tinkercad (Autodesk,
Inc., San Rafael, CA) and printed using a 3D printer (Ultimaker 3, Ul-
timaker, Geldermalsen, Netherlands) in our lab. As it can be seen in
Fig. 3-b (top view), an external GPS antenna and bullseye level were
attached to the imager enclosure. Provided the imager is installed at
nadir view, the lenses will be protected from precipitation but not dust

Fig. 2. Graphical user interface (GUI) of the imaging
system (ThermoCrop-FSTTM). The GUI automatically
overlays RGB and thermal images in real-time if ‘RGB
Overlay’ box is checked. It can be used for capturing
images automatically at specified time intervals (if the
‘Auto Capture’ box is checked) or taking snapshots
manually and setting start and stop capturing times.
The imager will automatically shutdown at the ‘stop’
time if the ‘auto off’ box is checked.

Fig. 3. Thermal-RGB imager enclosure: (a) bottom view (conical frustum-shaped head and camera lenses), (b) top view (GPS antenna and bullseye level), and (c) internal view
(compartment for electronic components).
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or tiny droplets of water traveling in the wind during an irrigation
event. The heat produced by the Pi CPU will also accumulate at the top
away from the electronics and dissipated gradually. An internal com-
partment was designed and 3D printed for securing electronic compo-
nents inside the enclosure. All the electronics were attached to the
compartment except for the camera modules, which were screwed to
the cap. The cap was fastened to the body using two small screws and
sealed using 100% silicon sealant.

2.3. Power management panel

One of the main challenges with the imagers installed in the field
was optimizing their power consumption or managing the power supply
for applications requiring continuous monitoring an over extended
period. Raspberry Pi 3 draws a relatively high amount of current even
under low CPU speeds. Other connected modules and electronic boards,
and wireless communications can significantly add to the power con-
sumption. Preliminary measurements showed that the typical current
draw of the imager could exceed 500mA. At this rate, a 7000-mAh acid
battery is drawn down to an empty state in about 12 h, assuming an
efficiency level of 85%. Thus to manage the power properly, a specific
power management panel was designed allowing the imager to be
turned on/off at specified times of the day. It is worth mentioning that
only images captured at specific times of day (between 10:00am and
2:00 pm) will be useful. Initially, we relied only on a relay board with
timer (GERI, Chinese manufacturer); however, it showed a significant
daily time drift. We then upgraded the design by adding an Arduino
board (model RedBoard, SparkFun Electronics, Boulder, CO) and an
ultraprecise real-time clock (ChronoDot, Adafruit Industries, New York
City, NY). The ultraprecise timer provided precise time to the Arduino,
and the Arduino sent the signal to the relay board to turn the imager
on/off. Fig. 4 shows a diagram of the connections between different
components of the panel. The panel included a 30W solar panel
(ACOPower, Chino, CA), a charge controller (Sunforce, Montreal West,
Canada), two 7000-mAh lead acid batteries (ExpertPower, Paramount,
CA) joined in parallel, and an ultraprecise timer as described above.

2.4. Data acqusition and transfer

The imager captures thermal and RGB images and records GPS co-
ordinates at a preset shooting interval. It then processes the images
using OpenCV which is embedded in the application. The imager single-
board computer is configured as a FTP server, which allows for easy
transfer of processed images and other collected data to a remote client
computer using the FTP protocol. The connection options are direct
using Ethernet cable or wireless using a WiFi access point. Ethernet
provides a more reliable and stable connection. Access to the imager
application is provided through the Remote Desktop (RD) feature of
Windows OS on client computer, and also applications installed on the
single-board computer. Although WiFi is available on the Raspberry Pi,
it is not reliable and can be very slow. Depending on the distance be-
tween nodes, a wireless router can provide internet access to several
imagers, or a USB dongle/modem can be used for individual imagers.
However, with a predominant network connectivity issue in many
agricultural fields these may not be practical. Individual imager is ac-
cessed through its unique IP address. The current design of imagers
allows for creating a network of imaging units in the field to obtain real-
time surface temperature data from plant canopies.

2.5. Lab and field evaluation of the imager

We assembled four units of thermal- RGB imagers and assessed their
performance under laboratory conditions. They were run on automatic
capturing mode for several months and observed for issues/bugs in the
GUI, quality of the images and failure. In order to investigate the re-
liability of the thermal modules, we also calibrated ten modules using a
blackbody calibrator (BB701, Omega Engineering, Inc., Stamford, CT)
over a range of 0 to °70 C. The ambient temperature was ± °23 0.5 C
throughout the measurements. The duration of each test was less than
15min and there was no replication. Several thermal modules inter-
faced to a single-board computer were also run continuously in the lab
and monitored independently of the RGB imagers.

In spring of 2017, experiments were conducted in a mint field under

12 V Batteries Charge Controller

Solar Panel

Control PanelThermal-RGB Imager

Ultraprecise Timer

Ultraprecise Timer

Ultraprecise Clock
Arduino

Relay Board

On

Off

Fig. 4. Diagram of the power management panel. An Arduino-based ultraprecise timer turned the power to the imager on/off at specified times of day.
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a center pivot irrigation system near Toppenish, WA (46.38°N,
120.46°W). Two spans of the center pivot were retrofitted with mid-
elevation spray application (MESA) and low energy spray application
(LESA) irrigation methods (one method per span). One imager was
installed on the MESA span and another on the LESA span. The imagers
viewed the mint field forward of the irrigations. Imagers positions and
distance from the ground surface and each other are illustrated in
Fig. 5. Half the field was under peppermint and the rest under spear-
mint plants. At the beginning of the data collection, the spearmint
plants were fully-grown while the peppermints were at early growth
stage. The imagers were attached to 4.5-m long boom backs with each
having two support arms. The distance between imager lens and bare
soil was about 4m, and from the fully-grown mint canopy surface (in
early June 2017) was about 3.5m. The imagers were located 40m apart
from each other. Considering the thermal module field of view of 51°, it
would cover an area of about 10.8 m2. The area within the FOV was
approximately 18m2 for the RGB module. The imagers were setup for
automatic picture taking at 1min intervals. Images were captured from
10:00 am–2:00 pm, which is time of maximum stomatal activity for
most crops (Jackson et al., 1981; Osroosh et al., 2015b). Based on this
shooting interval, the power management panel turned the imager on at
9:50 am and turned it off at 2:10 pm. The imagers were not connected
to the Internet, and a Cat 6 ethernet cable was used for connecting a
laptop to the imagers.

2.6. Image processing algorithm

The FOV of imagers includes wet/dry soil surface, and sunlit/
shaded canopy leaves. An algorithm was developed to automatically
detect these components in a RGB image, separate soil background and
shaded leaves, and extract sunlit leaves average temperature and per-
cent canopy coverage. The flowchart of the image-processing algorithm
is depicted in Fig. 6. The algorithm takes RGB and thermal images,
crops, resizes and overlaps images, and creates two types of binary
masks. Thermal images are in raw binary data format, which need to be
converted to a matrix (80×60) of actual temperature values. Factory
conversion equation ( ° = −temperature ( C) 273.15Pixel Value

100 ) and thermal
module calibration coefficients determined in the lab are applied to
individual pixel raw values to calculate actual temperature (°C). The
first mask is created by removing soil background and shaded parts of
canopy from the RGB image. The background is then removed from the
thermal image by multiplying the binary mask by the thermal image. At

the end, the average temperature of sunlit leaves is calculated. The
second mask is created using the RGB image and removing only soil
background. The resulting image is used to calculate the percent canopy
coverage. The process of creating masks involves separating the red,
green and blue channels and logical indexing. The green channel is
compared with blue and red to segment the image into soil background
and canopy. The brightness intensities of red and green channels are the
basis for dividing canopy into shaded and sunlit regions. In the calcu-
lation of the canopy coverage the latter stage is skipped.

2.7. Data and image analysis

The statistical means used here were (a) the root mean square error
(RMSE), (b) the mean absolute error (MAE), (c) a linear regression
between two sets of measurements (calibration), and (d) the standard
error of the mean (SE of Mean). The root mean square error was em-
ployed as a measure of the variance between n measurements of
thermal module (TLep) and blackbody calibrator (Tbb):

∑
=

−
RMSE

T T

n

( )Lep bb
2

(1)

The mean absolute error (MAE) was also used as a measure of the
variance between TLep and Tbb:

=
∑ −

MAE
T T

n
| |Lep bb

(2)

The postprocessing of images was conducted in MATLAB (2017Ra,
MathWorks, Natick, MA). The ‘haversine’ formula (van Brummelen,
2013) and lines of VBA code in Microsoft Excel (Microsoft Corporation,
Redmond, WA) were used to convert coordinates of two points to dis-
tance.

3. Results and discussion

3.1. Laboratory calibration and assessment of thermal modules

Neither the thermal or RGB camera modules have documented in-
formation on durability under field conditions. They are very in-
expensive yet delicate units. Thus, performance evaluation under field
conditions was an important part of this research. At this stage, we were
unaware of any effect humidity, dust and temperature fluctuations may

4.5 m

Camera

40 m

3.5 m

(a)

ame

(b)

Power Panel 

Fig. 5. Installation of thermal-RGB imagers in the mint field (imagers positions and distance from the ground surface and each other): (a) imager mounted on span retrofitted with MESA
(close imager), and (b) imager mounted on span retrofitted with LESA. The power management panels were installed next to pivot wheels for easy access. The imagers were attached to
boom backs with two support arms.
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have on the performance of the modules long term; however, they
survived extremely hot hours of summer in central Washington with no
failure. Their low cost allows for affordable replacement in case of
malfunctioning. During our lab experiments, we noticed that the
thermal module shutter is very susceptible to mechanical failure if
mishandled and had one case of failure in the lab. Aside from this, there
were no issues with the shutter in the lab or in the field. The thermal
module with radiometry is factory-calibrated. According to the doc-
umentation, measurements are carried out with a surface in close
proximity to the module and 1.0 emissivity. In practice, however, many
factors will influence the accuracy of real scene measurements.

Table 1 lists the statistical results for the linear calibration of ten
thermal modules in the laboratory at an ambient temperature of

± °23 0.5 Cusing the blackbody calibrator. It can be seen that in all
cases the coefficient of determination was nearly 1 ( >R 0.9992 ), and the
RMSE, and MAE after calibration were very small ( < °RMSE 0.6 C;

< °MAE 0.5 C). The close proximity of RMSE and MAE indicates that
the measurements were free of noise (outliers). The average error of
thermal modules without calibration was ± °2.4 C. However, the
highest error reached was ± °5.2 C, which agreed with the value

reported by the manufacturer. For some reason, the measurements at
temperatures above °50 C were erroneous. Further investigation re-
vealed that the error was systematic in nature and could be fixed by
multiplying -1 to raw sensor readings. It is recommended to run
through the calibration process in a room with higher ambient air
temperature (e.g. °35 C) to simulate a range of air temperatures that the
sensors will be exposed to during the growing season.

3.2. Mint field imaging and data analysis

Sample data mapped using Google MapsTM are illustrated in Fig. 7.
The travel speed of the center pivot calculated from the same GPS data
sample was 30m h−1 for a travel path of ∼74m. The imager is in-
capable of detecting center pivot movement, thus it keeps capturing
images while the pivot is not traveling. Considering the fact that GPS
coordinates are recorded, the application can be modified to capture
images based on predefined zones. It may also be possible to use the
GPS receiver data to detect movement.

Sample thermal and RGB images captured by the imagers before
and after processing are illustrated in Fig. 8. The images are re-
presenting fully-grown spearmint with 100% coverage (Fig. 8a), fully-
grown spearmint with bare soil in the image (Fig. 8b), and recently
planted peppermint plants with bare soil covering most of the image
(Fig. 8c). Applying the image-processing algorithm, the average tem-
perature of the sunlit leaves and percent canopy coverage corre-
sponding to the images in Fig. 8a–c were calculated to be 20.7, 18.4 and

°40.6 C, and 100, 96.6 and 15.5%, respectively. The canopy surface
temperature in the image with low canopy coverage appeared to be
somewhat high. Further inspections revealed that the main source of
error was due to slight misalignment of the RGB and thermal images
leading to the inclusion of background in the final masked thermal
image. This introduced significant error in the calculation of average
sunlit leaves surface temperature. The problem was more severe when
the plants were sparse and surrounded by hot bare soil. Another source
of error was soil background interference with the pixels of thermal
image as previously mentioned by O’Shaughnessy et al. (2012, 2015).

The relative frequency histograms of masked thermal images are
illustrated in Fig. 9. The images with high canopy coverage (Fig. 9a and
b) showed only one peak with a narrow temperature range whereas the

Capture RGB (jpg) & thermal images (binary) 

Crop, resizeand overlay RGB & thermal images

Read thermal raw binary data, convert to 
temperature, and apply calibration coefficients 

Create a mask of soil background using RGB image

Remove background from thermal image using 
the mask (binary mask multiplied by thermal) 

Create a mask of soil background and shaded 
parts of canopy using RGB image 

Calculate average temperature of sunlit leaves 

Calculate canopy coverage 

Start 

Fig. 6. Flowchart of the image-processing algorithm. The algorithm takes RGB and thermal images, creates binary mask and multiplies it by thermal binary image. The resulting images
are used to calculate the average surface temperature of sunlit leaves, and canopy coverage.

Table 1
Linear calibration of thermal modules (Thermal Module= Slope ×
BlackBody+ Intercept).

Module Before calibration After calibration

RMSE MAE RMSE MAE Slope Intercept R2

1[a] 1.5 1.1 0.5 0.4 1.0517 −2.433 0.9992
2[a] 1.6 1.4 0.4 0.3 1.0814 −3.027 0.9995
3 1.2 1.2 0.6 0.5 1.0531 −0.6249 0.9989
4 2.1 1.8 0.3 0.2 1.0833 −3.8876 0.9997
5 1.9 1.5 0.5 0.5 1.1031 −3.4973 0.9991
6 4.4 3.6 0.3 0.2 1.1684 −8.3957 0.9998
7 1.8 1.6 0.4 0.3 1.0915 −1.1042 0.9995
8 2.0 1.8 0.3 0.2 1.1286 −3.0279 0.9997
9 5.2 4.6 0.5 0.4 1.1636 −9.4243 0.9991
10 2.2 2.0 0.4 0.4 1.1164 −4.1138 0.9992
Mean 2.4 2.1 0.4 0.3 1.1041 −3.9536 0.9994

aThese modules were used in the imagers installed in the field.
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Fig. 7. Satellite view of the mint field and center pivot travel path according to the imager GPS module. The GPS coordinates were recorded consecutively at 157 locations.

Fig. 8. Sample thermal and RGB images captured by imagers in June and July of 2017 between 10:00am and 2:00 pm, and images as the result of the processing: (a) fully-grown
spearmint with 100% coverage, (b) fully-grown spearmint with bare soil in the image, and (c) recently planted peppermint plants. The color bar shows temperature in degree Celsius.
Each column of image includes (from top to bottom) RGB image, thermal image, overlayed and resized RGB and thermal images, binary mask, and thermal image multiplied by the binary
mask.
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thermal image of recently planted mints had two significant peaks and a
wider range of temperatures. The mean surface temperature of sunlit
leaves and canopy cover of six sets of sample images along with the first
peak of the relative frequency histogram is listed in Table 2. The mean
values and cover percentages were calculated using the original image-
processing algorithm. The peak and mean temperature of fully-grown
canopies were within ∼ °0.1 C. In the recently planted mints, on the
other hand, the difference was 3–5 °C. Inspecting more images (not
shown here) proved to be consistent pattern. Looking at the histograms,
the values of sunlit canopy leaf surface temperature seem to follow the
Gaussian distribution (not statistically tested). The image-processing
algorithm was amended according to this finding by replacing the
smallest peak temperature (after rounding) with the average tempera-
ture of pixels.

3.3. Infrared thermometry versus infrared thermal imagery

Detailed information on the components of the imaging system and
their approximate cost are listed in Table 3. Shortcomings and strengths
of the traditional IRT-based thermal sensing and our imaging system
are also summarized in Table 4. Total cost of building a prototype
imager is about $400. An IRT is most often a sensor whose output re-
quires conditioning by a datalogger or reader adding to the expenses in
practical applications. Our thermal-RGB imager, contains all the ne-
cessary hardware and software for conditioning the thermal module
output signal in real-time, processing and recording captured images.
This cost is expected to further decrease after commercialization. The
cost for the power management panel was about $300, which, de-
pending on the application, may be necessary.

In infrared thermometry, soil background interference with surface
temperature readings is a major source of uncertainty (O’Shaughnessy
et al., 2012; Osroosh et al., 2015b). Thus, complementary measure-
ments are necessary to distinguish between canopy and soil back-
ground. O’Shaughnessy et al. (2015) used an algorithm and simulta-
neous measurements of thermal IR, NIR and red bands to identify the
areas of field covered by either soil or an admixture of soil and plant.
The normalized difference vegetation index of <0.25 was the basis for
disqualifying a concurrent thermal measurement and not using it to
compute the crop water stress index. In the imaging system, combined
RGB and thermal imagery allows for removing the soil background and
even shaded parts of the canopy effectively, and allows for calculating
canopy coverage precisely. When IRTs are used, the only way to ac-
count for these is to introduce some assumptions on the percentage of
shaded and sunlit leaves, and/or soil background in the modeling

Fig. 9. Relative frequency histogram for sample thermal images in Fig. 8a-c: (a) fully-grown spearmint with 100% coverage, (b) fully-grown spearmint with 96.6% coverage, and (c)
recently planted peppermint plants with 15.5% canopy coverage.

Table 2
Extracted surface temperature from sample RGB and thermal images for a variety of
canopy coverage.

Sample Canopy
coverage (%)

Mean surface temperature
of sunlit leaves (°C)

First peak of relative
frequency histogram (°C)

1 100 20.7 20.7
2 96.6 18.4 18.3
3 87.3 33.0 33.5
4 65.4 33.7 32.5
5 15.5 40.6 34.5
6 3.7 36.7 33.4

Table 3
Cost for the components of the imaging system in 2016.

Component Part Model/Manufacturer Quantity Total Price

Thermal-RGB Imager Single-board computer Raspberry Pi 3/Raspberry Pi Foundation 1 $40
SD card 16-GB microSD/Kingston Technology, Fountain Valley, CA 1 $20
Thermal camera module+breakout board Lepton 2.5 (radiometric with shutter)/FLIR Systems, Inc., Wilsonville, OR 1 $240
RGB camera module Raspberry Pi Camera Module V2/Raspberry Pi Foundation 1 $30
GPS module+ antenna Ultimate GPS Breakout/Adafruit Industries, New York City, NY 1 $60
DC-DC convertor S18V20ALV/Pololu Robotics and Electronics, Las Vegas, NV 1 $17
Other (cable etc.) $100

Total $407

Power Management Panel Lead acid battery 12 V, 7 Ah/ExpertPower, Paramount, CA 2 $32
Solar panel 30W/ACOPower, Chino, CA 1 $56
Charge controller 7 A/Sunforce, Montreal West, Canada 1 $20
Relay cycle timer module GERI/Chinese manufacturer 1 $16
Arduino Redboard/SparkFun Electronics, Boulder, CO 1 $20
Ultra-precise real-time clock ChronoDot/Adafruit Industries, New York City, NY 1 $18
Other (enclosure etc.) $150

Total $310
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(Osroosh et al., 2014, 2015a; Colaizzi et al., 2017). An important dif-
ference between IRT and a thermal imager is their accuracy. An IRT can
measure surface temperature as accurately as a tenth of a degree while
reported accuracy of the best available thermal modules/cameras is
around °2 C. As mentioned earlier, the thermal module used herein has
a reported accuracy of ± °5 Calthough lab calibration of ten sample
modules showed an average accuracy of ± °2.5 C. Power consumption
is another concern when using the imager for unattended continuous
measurements in the field. The power management panel adds to the
total cost. In addition, the number of hours an imager can be used is
limited by the power source.

The entire image processing can be done on-board by the imager
and there is no need to transfer images to another computer for further
processing. ZigBee modules can be added to the design to create a mesh
network in the field. In this case, only the resulting data from post
processing images are transferred over long distances due to their low
speed. In the real-time image-processing scenario, overlaying thermal
and RGB images could be carried out by adding a range finding sensor
to automatically measure the distance between the imager and canopy
surface. Canopy height is also a useful parameter in ET estimations.

As described by Khanal et al. (2017), there are many potential ap-
plications of such an imaging system towards plant and fruit stressors
monitoring during production. For example, it can be used for tree-fruit
frost monitoring for effective actuation of management methods, fruit
surface characteristics (temperature, wetness, abiotic/biotic stressors)
monitoring, crop pest and disease monitoring, crop transpiration and
water stress monitoring, and so on. By combining the imaging system
with a microclimate measuring unit, real-time CWSI and evapo-
transpiration maps can be created. Real-time crop evapotranspiration
calculations can be used for creating dynamic prescription maps and
irrigation scheduling (Colaizzi et al., 2017). Dynamic prescription map
is a relatively new area of research, which currently relies on soil
moisture sensors or infrared thermometers abroad center pivot
(O’Shaughnessy et al., 2017). Our imaging system can replace/com-
pliment infrared thermometers in such applications and provide higher
resolution, and a more accurate map of canopy surface temperature.

4. Conclusion

In this study, we developed a functional thermal-RGB imager and
mounted two modules on a center pivot-irrigated mint field in central
Washington, United States. To help save power, a power management
panel was specifically designed for the imagers to turn them on/off at
specified times of day. We also developed image-processing algorithm,
which process thermal and RGB images by removing the background
from the thermal image, and calculates the surface temperature of
sunlit leaves and canopy coverage. Our affordable thermal imager can
be used to create a wireless network for high resolution spatial and
temporal monitoring of agricultural fields and orchards. Our onboard

processing system reduces the traffic on the wireless sensor network.
The current design of the imager allows for creating a star network of
imaging units in the field to obtain real-time surface temperature data
from plant canopies. Therefore, in combination with appropriate
models and algorithms, the thermal-RGB imaging system has the po-
tential to be used for creating real-time evapotranspiration and pre-
scription maps, and irrigation scheduling.
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